
1. BASH
¿Qué shells tengo disponibles?
En /etc/shells puedo visualizar los shells disponibles en mi sistema. Con bash debe de ser más que
suficiente para las tareas habituales que necesitemos.

Los repositorios de Linux contienen otros shells que podríamos añadir a nuestro sistema.

Lo vemos en el siguiente listado:

¿Por qué necesitamos scripts en bash?
Porque necesitamos AUTOMATIZAR tareas complejas, habituales y que requieran ser
simplificadas.

Al crear un script que contiene una serie de instrucciones podemos reducir tareas repetitivas a la
ejecución de una sola orden.

Ejemplos : Copia de seguridad, envío de mensajes, comprobación parámetros sistema, tareas
complejas, ..

Además de las funcionalidades básicas de ejecución de una serie de órdenes bash nos proporciona
una serie de características que nos va a permitir crear automatizaciones de cierta complejidad.

Entre esas características tenemos:

• Variables.

• Estructuras de control.

• Parámetros.

• Funciones.

Para crear un script debemos realizar los siguientes pasos:

1. Crear un fichero con un editor de texto, Geany o cualquier programa similar. La extensión
de dicho fichero será sh

2. Dar permisos de ejecución bien a través del botón derecho y la pestaña permisos o bien a
través del terminal mediante la orden chmod +x fichero.sh

3. Ejecutar el script bien a través del terminal o en el propio Geany. Si es a través del terminal
pondremos ./

4. Dentro del fichero, nuestro script siempre empezará con #!/bin/bash

2. VARIABLES
Una variable es un “lugar” donde podemos almacenar un valor y recuperarlo cuando queramos,
siempre que nuestro script este en ejecución.

Para poder hacer referencia a una variable utilizaremos un nombre. Sobre una variable podemos
realizar operaciones de guardar su valor y leer su valor.

Por ejemplo: Como resultado quedaría:

Cuando las variables sean texto y contengan espacios en blanco, estas deberán estar definidas entre
comillas:

nombre=Micaela

nombre=”Micaela Alfonso”

Comillas dobles y comillas simples

Si escribo echo “Hola $nombre”, el resultado será el mostrado en el ejemplo. Por contra si
escribimos echo ‘Hola $nombre’ el resultado será el literal Hola $nombre, no sustituyendo la
variable nombre en la ejecución.

Lectura de variables por teclado:

O también:

 Cuyo resultado es el mismo que el anterior.

También podemos pasar el valor de la variable directamente por el terminal al ejecutar el script:

Variables especiales en bash
• $0 : Nombre del script

• $1 – $9 : los primeros nueve argumentos que se pasan a un script en Bash

• $# : el número de argumentos que se pasan a un script

• $@ : todos los argumentos que se han pasado al script

• $? : la salida del último proceso que se ha ejecutado

• $$: ID del proceso del script

• $USER : el nombre del usuario que ha ejecutado el script.

• $HOSTNAME : hostname de la máquina en la que se está ejecutando el script

• $SECONDS : tiempo transcurrido desde que se inició el script, contabilizado en segundos.

• $RANDOM : número aleatorio cada vez que se lee esta variable.

• $LINENO : indica el número de líneas que tiene nuestro script.

Variables accesibles en bash
Utilizando el comando env en un terminal podemos ver todas las variables accesibles de nuestro
shell.

Variables avanzado
Veamos algunos ejemplos de uso avanzado de variables:

• Asignación de órdenes a variables. En el siguiente ejemplo nos contará los usuarios del
sistema operativo.

• Variables con más de una línea generada:

El resultado sería el listado de todo el fichero passwd de contraseñas encriptadas del sistema
operativo.

• Operaciones aritméticas:

• Operaciones con cadenas de texto. Extraer texto

• Operaciones con cadenas de texto. Sustituir texto.

• Operaciones con cadenas de texto. Eliminar texto.

• Operaciones con cadenas de texto. Eliminación, sustitución….

3. CONDICIONALES
Ejecución condicional de una lista de órdenes:

Ejecutar una orden si la primera ejecución es correcta:

cd mi_carpeta && pwd
El operador && indica que se ejecute la segunda orden sólo en el caso de que la ejecución de la
primera orden haya sido correcta. En el ejemplo sólo mostrará la ruta si la carpeta existe.

Ejecutar una orden si la primera ejecución es errónea:

cd my_directory || exit
El operador || indica que se ejecute la segunda orden sólo en el caso de que la ejecución de la
primera orden haya sido errónea.

En el ejemplo en el caso de no existir la carpeta lanza un exit para para la ejecución del script. Así
evitaremos situaciones desastrosas por utilizar una carpeta que no era la prevista.

Condicional if

if [[$1 -eq 1]]; then

echo “Hola”

else

echo “Adios”

fi

Si el parámetro pasado al script es 1 muestra “Hola” y si no muestra “Adios”.

Así funciona un condicional:

Condicionales lógicas de ficheros
• -e “$fichero” : Devuelve verdadero si el fichero existe

• -d “$fichero” : Devuelve verdadero si el fichero existe y es una carpeta

• -f “$fichero” : Devuelve verdadero si el fichero existe y es un fichero regular

• -h “$fichero” : Devuelve verdadero si el fichero existe y es un enlace

• -r “$fichero” : Devuelve verdadero si el fichero existe y tiene permiso de lectura

• -w “$fichero” : Devuelve verdadero si el fichero existe y tiene permiso de escritura

• -x “$fichero” : Devuelve verdadero si el fichero existe y tiene permiso de ejecución

Condicionales lógicas de cadenas de caracteres
• -z “$cadena” : Devuelve verdadero si la longitud de la cadena es cero.

• -n “$cadena” : Devuelve verdadero si la longitud de la cadena no es cero.

• “$cadena1” = “$cadena2” : Devuelve verdadero si las dos cadenas son iguales.

• “$cadena1” != “$cadena2” : Devuelve verdadero si las dos cadenas son diferentes.

Ejemplo:

if [[$1 = “Micaela”]]; then

echo “Hola Micaela”

else

echo “¿Dónde está Micaela?”

fi

Condicionales lógicas de números enteros
• “$entero1” -eq “$entero2” : Devuelve verdadero si los dos enteros son iguales.

• “$entero1” -ne “$entero2” : Devuelve verdadero si los dos enteros son diferentes.

• “$entero1” -gt “$entero2” : Devuelve verdadero si entero1 es mayor que entero2.

• “$entero1” -ge “$entero2” : Devuelve verdadero si entero1 es mayor o igual que entero2.

• “$entero1” -lt “$entero2” : Devuelve verdadero si entero1 es menor que entero2.

• “$entero1” -le “$entero2” : Devuelve verdadero si entero1 es menor o igual que entero2.

Ejemplo:

if [[$edad -ge 18]]; then

echo “Eres mayor de edad”

else

echo “Eres menor de edad”

fi

Expresiones más complejas:

Ejemplo: Si el número es mayor o igual que 200 Y menor o igual que 300 muestra OK

if [[$num -ge 200]] && {[$num -le 300]];

then

echo “OK”

fi

Condicional case
Dada una expresión la comparamos con diferentes supuestos y sólo ejecutamos el que se cumpla :

case <expresión> in

<patrón 1>)

órdenes

;;

<patrón 2>)

órdenes

;;

*)

órdenes

;;

esac

Ejemplo 1:

case $1 in

1)

echo "Uno"

;;

2)

echo "Dos"

;;

*)

echo "Otro número"

;;

esac

Ejemplo 2:

case $1 in

s|S)

echo "Has pulsado Sí"

;;

n|N)

echo "Has pulsado No"

;;

*)

echo "Desconozco la opción"

;;

esac

4. BUCLES
Un bucle es una estructura que permite que un grupo de órdenes en Bash se repita varias veces. Es
una estructura habitual en cualquier lenguaje de programación y permite realizar tareas repetidas
varias veces determinadas por una lista o una condición.

En Bash tenemos dos formas de realizar bucles mediante las sentencias for y while.

Ambas sentencias tienen sus peculiaridades y utilizaremos una u otra en función del número de
repeticiones, si está predeterminado antes de empezar, cuál es el caso inicial, cuándo termina el
bucle, ...

Incluso en determinadas situaciones se puede resolver el mismo problema utilizando for o while.

Bucle for para recorrer listas o secuencias
Ejemplo 1:

Ejemplo 2:

Ejemplo 3:

while
El bucle while ejecuta iteraciones mientras se cumpla la condición lógica que se indica al principio.

Las condiciones lógicas que se pueden indicar en un bucle while son las mismas que se vieron en el
condicional if:

• ficheros

Ejemplo: -e “/etc/network/interfaces”

• enteros

Ejemplo: num -ne 6

• cadenas de caracteres

Ejemplo: $cadena1 = “hola”

Ejemplo:

Break y continue
Tanto en los bucles for como en los bucles while existen dos instrucciones que nos permiten romper
el orden lógico de la ejecución del bucle:

• break → Sale de la ejecución del bucle y el bucle ya no se ejecuta más.

• continue → Sale de la ejecución de la iteración y vuelve a comenzar una nueva iteración.

5. DOCUMENTACIÓN
- Miguel Ángel Ferrer. IES Salvador Gadea.

- Micaela Alfonso. IES Salvador Gadea.

