1. BASH

¢ Qué shells tengo disponibles?

En /etc/shells puedo visualizar los shells disponibles en mi sistema. Con bash debe de ser mas que
suficiente para las tareas habituales que necesitemos.

Los repositorios de Linux contienen otros shells que podriamos afiadir a nuestro sistema.

Lo vemos en el siguiente listado:

micaela@hp-micaela: ~

Archivo Editar Ver Buscar Terminal Ayuda

:~S cat fetc/fshells
fetc/shells: valid login shells
Jbin/sh
/bin/bash
Jusr/bin/bash
/bin/rbash
Jusr/bin/rbash
Jusr/bin/sh
/bin/dash
Jusr/bin/dash

-5 i

¢Por qué necesitamos scripts en bash?

Porque necesitamos AUTOMATIZAR tareas complejas, habituales y que requieran ser
simplificadas.

Al crear un script que contiene una serie de instrucciones podemos reducir tareas repetitivas a la
ejecucion de una sola orden.

Ejemplos : Copia de seguridad, envio de mensajes, comprobacién parametros sistema, tareas
complejas, ..

Ademas de las funcionalidades basicas de ejecucién de una serie de 6rdenes bash nos proporciona
una serie de caracteristicas que nos va a permitir crear automatizaciones de cierta complejidad.

Entre esas caracteristicas tenemos:

Variables.
Estructuras de control.
Pardmetros.

Funciones.

Para crear un script debemos realizar los siguientes pasos:

1.

Crear un fichero con un editor de texto, Geany o cualquier programa similar. La extensién
de dicho fichero sera sh

Dar permisos de ejecucion bien a través del boton derecho y la pestafia permisos o bien a
través del terminal mediante la orden chmod +x fichero.sh

Ejecutar el script bien a través del terminal o en el propio Geany. Si es a través del terminal
pondremos ./

Dentro del fichero, nuestro script siempre empezara con #!/bin/bash

2. VARIABLES

Una variable es un “lugar” donde podemos almacenar un valor y recuperarlo cuando queramos,
siempre que nuestro script este en ejecucion.

Para poder hacer referencia a una variable utilizaremos un nombre. Sobre una variable podemos
realizar operaciones de guardar su valor y leer su valor.

Por ejemplo: Como resultado quedaria:
variable.sh € Terminal
1 #1/bin/bash Arlchivo. Ediltar Ver Buscar Terminal Ayuda
2 nombre=Micaela Lo e
3 echo
O R 090
5 echo Hola $nﬂmhrd (program exited with code: @)
6 Press return to continue

Cuando las variables sean texto y contengan espacios en blanco, estas deberan estar definidas entre
comillas:

nombre=Micaela
nombre="Micaela Alfonso”
Comillas dobles y comillas simples

Si escribo echo “Hola $nombre”, el resultado sera el mostrado en el ejemplo. Por contra si
escribimos echo ‘Hola $nombre’ el resultado sera el literal Hola $nombre, no sustituyendo la
variable nombre en la ejecucién.

Lectura de variables por teclado:

Tern
variable.sh € , - -
Archivo Editar Ver Buscar Terminal Ayuda
1 #!1/bin/bash Dime tu nombre
E .
2 echo Mlcael?
3 read nombre s LA
4 echo
- (program exited with code: @)
6 | Press return to continue
O también:
variable.sh €
TR Cuyo resultado es el mismo que el anterior.
1 #!/bin/bash
2 echo
3 read nombre
4 echo
5
6 |

También podemos pasar el valor de la variable directamente por el terminal al ejecutar el script:
Vilfiilble Sh e IHILHClﬂ@JIIP'I\IILﬂElﬂ. "!UU'.HIHCIII.U)['.UIlULJ'l"I! IIJCII.!)'.I IPl.l.l.Wllﬂ -

#!/bin/bash Archivo Ecitar Ver Buscar Terminal Ayuda

et : § . artable.sh micaela
Nowbre pasado directanente al script por el terninal
Hola micaela

l
l
1
4 o
2 il
Variables especiales en bash
* $0: Nombre del script
* $1-19%9: los primeros nueve argumentos que se pasan a un script en Bash
* $#: el nimero de argumentos que se pasan a un script
* $@ : todos los argumentos que se han pasado al script
* $?:lasalida del ultimo proceso que se ha ejecutado
* $$: 1D del proceso del script
* $USER : el nombre del usuario que ha ejecutado el script.
* $HOSTNAME : hostname de la maquina en la que se esta ejecutando el script
* $SECONDS : tiempo transcurrido desde que se inici6 el script, contabilizado en segundos.
* $RANDOM : numero aleatorio cada vez que se lee esta variable.
* S$LINENO : indica el nimero de lineas que tiene nuestro script.
Variables accesibles en bash

Utilizando el comando env en un terminal podemos ver todas las variables accesibles de nuestro
shell.

Variables avanzado
Veamos algunos ejemplos de uso avanzado de variables:

* Asignacion de ordenes a variables. En el siguiente ejemplo nos contara los usuarios del
sistema operativo.

variable.sh € Terminal
1 #!1/bin/bash Archivo Editar Wer Buscar Terminal Ayuda
2 num=$(cat /etc/passwdjwc -1) Hay 48 usuarios en el sistema
3
4 echo
I | I
(program exited with code: ©8)
Press return to continue
variable.sh € Terminal
1 #!/bin/bash Archivo Editar Ver Buscar Terminal Ayuda
2 Hay 48 usuarios en el sistema
3 num="cat /etc/passwd|wc -1° y
4
5 echo
= | L .
(program exited with code: 8)
Press return to continue

* Variables con mas de una linea generada:

variable.sh €
#!/bin/bash
num= cat /etc/passwd’

echo $num

(= W, R -y FE I N Iy

El resultado seria el listado de todo el fichero passwd de contrasefias encriptadas del sistema
operativo.

* Operaciones aritméticas:

Operador Operacion Ejemplo
+ Suma echo$((2+ 2))
- Resta echo $((2-2))
/ Division echo$((2/2))
* Multiplicacion echo $((2*2))
% Modulo echo $((2 % 2))
X=D5
++ Incremento echo $((x++))
X=D5
— Decremento echo $((Sm))
ok Exponente echo$((2**2))
* Operaciones con cadenas de texto. Extraer texto
variable.sh € Terminal
1 #!/bin/bash Archivo Editar WVer Buscar Terminal Ayuda
2 # Extraer texto Esto es una cadena de texto
i frase= S una cade
echo $frase
5 echo ${frase:6:10}
6

(program exited with code: @)
Press return to continue

* Operaciones con cadenas de texto. Sustituir texto.

variable.sh € Terminal

#1/bin/bash Archivo Editar Ver Buscar Terminal Ayuda
Extraer texto

frase="Esto e E e text
echo $frase
echo ${frase/texto/caracteres}

Esto es una cadena de texto
Esto es una cadena de caracteres

L= Q0 QR S W S]

(program exited with code: 8)
Press return to continue

* Operaciones con cadenas de texto. Eliminar texto.

variable.sh € Terminal
1 #!/bin/bash Archivo Editar Ver Buscar Terminal Ayuda
2 # Extraer texto
3 Eracr R b e e b Esto es una cadena de texto
4 echo $frase Esto es una de texto
5 echo ${frase//cadena}
6
(program exited with code: 8)
Press return to continue
* Operaciones con cadenas de texto. Eliminacion, sustitucion....
variable.sh @ Terminal
; i!ébim‘bas: . Archivo Editar Ver Buscar Terminal Ayuda
3 ech: r?eE ex ? P— Introduce una frase
4 read frase Clase de informatica de Bachillerato
5 echo "La frase int ida e sfrase La frase introducida es: Clase de informatica de Bachillerato
6 echo "Int e al 1 e la frase eliminarl Introduce alguna palabra de la frase para eliminarla
7 read palabra ' de Bachillerato
8 Clase de informatica
9 echo ${frase//${palabra}}
18
(program exited with code: @)
Eress return to continue

3. CONDICIONALES

Ejecucién condicional de una lista de 6rdenes:

Ejecutar una orden si la primera ejecucion es correcta:
cd mi_carpeta & & pwd

El operador && indica que se ejecute la segunda orden sélo en el caso de que la ejecucion de la
primera orden haya sido correcta. En el ejemplo s6lo mostrara la ruta si la carpeta existe.

Ejecutar una orden si la primera ejecucion es erronea:
cd my_directory || exit

El operador || indica que se ejecute la segunda orden s6lo en el caso de que la ejecucion de la
primera orden haya sido erronea.

En el ejemplo en el caso de no existir la carpeta lanza un exit para para la ejecucion del script. Asi
evitaremos situaciones desastrosas por utilizar una carpeta que no era la prevista.

Condicional if

if [[$1 -eq 1 11; then
echo “Hola”
else
echo “Adios”
fi
Si el parametro pasado al script es 1 muestra “Hola” y si no muestra “Adios”.

Asi funciona un condicional:

Condicional if

Condicion
edad=9 l6gica a
evaluar

FALSO VERDADERO

Y

"Eres menor de edad" "Eres mayor de edad"

Condicionales logicas de ficheros
* -e “$fichero” : Devuelve verdadero si el fichero existe
* -d “$fichero” : Devuelve verdadero si el fichero existe y es una carpeta
* -f “$fichero” : Devuelve verdadero si el fichero existe y es un fichero regular
* -h “$fichero” : Devuelve verdadero si el fichero existe y es un enlace
* -1 “S$fichero” : Devuelve verdadero si el fichero existe y tiene permiso de lectura
* -w “$fichero” : Devuelve verdadero si el fichero existe y tiene permiso de escritura

* -x “$fichero” : Devuelve verdadero si el fichero existe y tiene permiso de ejecucion

Condicionales logicas de cadenas de caracteres
* -z “$cadena” : Devuelve verdadero si la longitud de la cadena es cero.
* -n “$cadena” : Devuelve verdadero si la longitud de la cadena no es cero.
* “$cadenal” = “Scadena2” : Devuelve verdadero si las dos cadenas son iguales.

¢ “S$cadenal” != “$cadena?” : Devuelve verdadero si las dos cadenas son diferentes.

Ejemplo:

if [[$1 = “Micaela” 1]; then
echo “Hola Micaela”
else
echo “;Ddénde esta Micaela?”
fi
Condicionales logicas de niimeros enteros
* “$enterol” -eq “$entero2” : Devuelve verdadero si los dos enteros son iguales.
* “$enterol” -ne “$entero2” : Devuelve verdadero si los dos enteros son diferentes.
* “S$enterol” -gt “$entero2” : Devuelve verdadero si enterol es mayor que entero2.
* “Senterol” -ge “$entero2” : Devuelve verdadero si enterol es mayor o igual que entero?2.
* “S$enterol” -It “$entero2” : Devuelve verdadero si enterol es menor que entero2.
* “S$enterol” -le “$entero2” : Devuelve verdadero si enterol es menor o igual que entero2.
Ejemplo:
if [[$edad -ge 18]]; then
echo “Eres mayor de edad”
else
echo “Eres menor de edad”
fi
Expresiones mas complejas:
Ejemplo: Si el nimero es mayor o igual que 200 Y menor o igual que 300 muestra OK
if [[$num -ge 200]] && {[$num -le 300]];
then
echo “OK”
fi
Condicional case
Dada una expresion la comparamos con diferentes supuestos y sélo ejecutamos el que se cumpla :
case <expresion> in
<patr6n 1>)
ordenes
<patr6n 2>)
ordenes
)
ordenes
esac

Ejemplo 1:

case $1 in

iy
echo "Uno"
2)
echo "Dos"
*)
echo "Otro nimero"
esac
Ejemplo 2:
case $1 in
5|S)
echo "Has pulsado Si"
n|N)
echo "Has pulsado No"
*)
echo "Desconozco la opcion”
esac
4. BUCLES

Un bucle es una estructura que permite que un grupo de 6rdenes en Bash se repita varias veces. Es
una estructura habitual en cualquier lenguaje de programacién y permite realizar tareas repetidas
varias veces determinadas por una lista o una condicion.

En Bash tenemos dos formas de realizar bucles mediante las sentencias for y while.

Ambas sentencias tienen sus peculiaridades y utilizaremos una u otra en funcién del nimero de
repeticiones, si esta predeterminado antes de empezar, cual es el caso inicial, cudndo termina el
bucle, ...

Incluso en determinadas situaciones se puede resolver el mismo problema utilizando for o while.

Bucle for para recorrer listas o secuencias

1 . color es la variable
E] en‘lplo 1. que recoge el valor lista que contiene
del elemento de la lista 5 palabras
en cada iteracion

azul rojo amarillo verde negro; dc

= El contenido del bucle for
se ejecutara 5 veces
una para cada elemento

Ejen‘lplo 2: de la lista

-)

Las 3 formas son
equivalentes
para indicar una
secuencia del 1 al 10

Ejemplo 3:

cuadrado
cuadrado
cuadrado
cuadrado
cuadrado
cuadrado
cuadrado
cuadrado
cuadrado
cuadrado

es 1

es 4

es 9

es 16
es 25
es 36
es 49
es 64
es 81

O es 100

POVoOoO~NOUnbhWNE

while

El bucle while ejecuta iteraciones mientras se cumpla la condicion l6gica que se indica al principio.

i=0
Inicializacion de la
variable i

$i-It6

el bucle
(i menor que 6)

Mientras se cumpla esta
ondicion se va a ejecutar

Incrementamos el valor de i
para que el bucle no se
repita de forma indefinida

Las condiciones logicas que se pueden indicar en un bucle while son las mismas que se vieron en el

condicional if:
* ficheros
Ejemplo: -e “/etc/network/interfaces”
* enteros
Ejemplo: num -ne 6
* cadenas de caracteres
Ejemplo: $cadenal = “hola”
Ejemplo:

un numero c

uad

Mientras no se introduzca el DinEiunsnind
namero 0 el script f e
ira mostrando el cuadrado
y el cubo del nimero
introducido

onocer su cuadradado y su cubo

su cuadradade y su cu

ar su cuadradado y su cubo (@ para

su cuadradado y su cubo (© para

Break y continue

Tanto en los bucles for como en los bucles while existen dos instrucciones que nos permiten romper
el orden légico de la ejecucion del bucle:

* break — Sale de la ejecucion del bucle y el bucle ya no se ejecuta mas.

* continue — Sale de la ejecucion de la iteracién y vuelve a comenzar una nueva iteracion.

5. DOCUMENTACION
- Miguel Angel Ferrer. IES Salvador Gadea.
- Micaela Alfonso. IES Salvador Gadea.

